Sound Attenuation

www.pac-intl.com

© PAC International Inc. 2007

Slide 1 of 48

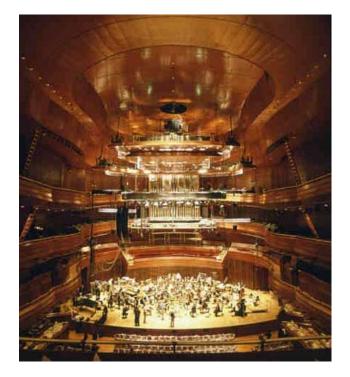
Sound Attenuation

PAC International 7310 Smoke Ranch Rd Suite "E" Las Vegas, NV. 89128

Course Number: XXXXXX Learning Units: 1.00

PAC International is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available upon request.

This program is registered with AIA/CES for continuing professional registration. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material or construction or any method or manner of handling, using, distributing or dealing in any material or product. Questions related to specific materials, methods and services should be directed to the program instructor.

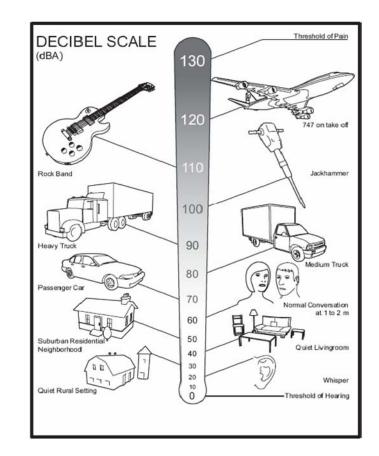

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

Learning Objectives

- Define acoustics as it relates to architecture
- Determine the code requirements for sound transmission criteria
- Predict airborne and structure borne noise paths and select appropriate sound isolation details to disrupt these paths
- Identify sound isolation techniques, materials and products
- Recognize the role of resilient sound isolation clips in sound attenuation and specify appropriate locations for their use

Introduction

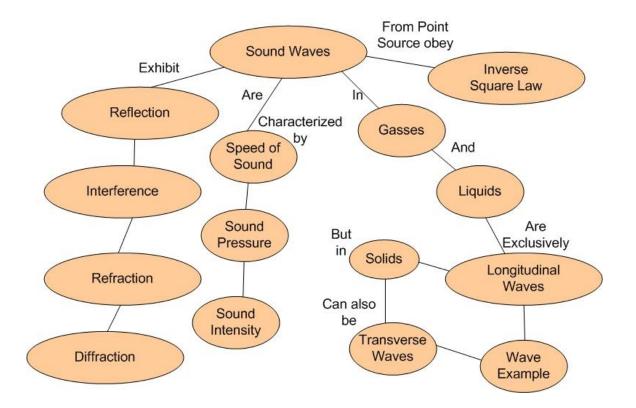
- Why is acoustics important in architecture?
- How does acoustics impact architectural design?
- Introduce acoustics, impact on design and sound control solutions.


Acoustics and Architecture

- Includes wall and ceiling assembly sound isolation
- Building systems noise and vibration control
- Room shaping and finishes to augment or control sound
- Exterior noise issues and mitigation, sound prediction, modeling and measurements.

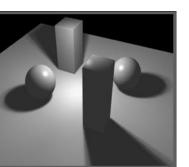
Acoustics is the science concerned with the production, control, transmission, reception, and effects of sound

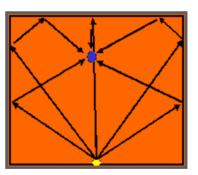
Sound

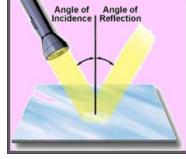

- Stimulation of hearing organs by mechanical vibration
- Travels in air at a speed of 1087 ft/s
- Is measured in decibels

Decibel

- Unit used to express sound level
- Expresses relative difference in power or intensity between two acoustic or electric signals
- A 10 decibel increase in sound is equal to a doubling of sound power level


Factors Affecting Sound Propagation


Sound and Light Properties


Sound Barrier

Shadow

Reflected Sound

Reflected Light

Loud Speaker Horn

Light Beam

Light Bulb

Bell Ringing

- Landscape design to reduce sound impact on site and building
- Exterior sound affected by ground effect, wind direction, temperature and air density

Sound Diffusion

Sound Berm

Sound Barrier

 Interior volume, wall and ceiling shaping, and finishes have direct correlation to reverberation time, early decay time, strength, clarity, lateral energy fraction, inter-aural cross correlation, and early support

Sound Diffusion

Sound Reflection

Sound Focusing

- Sound creepage and sound focusing can occur in interior spaces
- Extreme sound attenuation with sound enclosure

Sound Absorber

Sound Enclosure

- Building form and space and function
- Large room volume, sound reflecting finishes contribute to excessive reverberant energy buildup

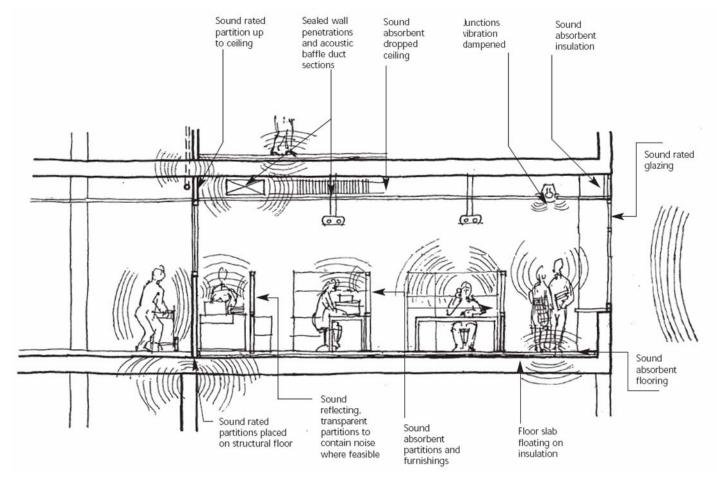
Acoustics Needs

ACOUSTICS NEEDS ASSESSMENT TABLE	Single Family Residence	High Density Dwelling	Arena and Recital Halls	Hotels & Timeshare	Recording Studios	Education	House of Worship	Clubs, Restaurants, Retail	Ballroooms, Meeting and Convention
Environmental Noise Assessment	х	х	х	х	х	x	х		×
Building Shell Evaluation	x	x	x	x	х	x	x		x
Space Adjacency		x	x	x	х	x	x	x	×
Partition Design & Designation		х	x	x	х	x	x	x	x
Floor-Ceiling Assembly		х		х	х			x	x
Acoustical Finishes & Room Shaping			х		х	x	х	x	x
Equipment Noise & Vibration Control		х	х	х	х	х	x	x	x
Plumbing Isolation	x	x	x	x	х		x		×
Field NIC (STC) and IIC Tests	x	x		x					
Sound & Reverberation Time Measurement			x		x	x	x		x

Normally Required. Not Normally Required.

х

Acoustic Needs


- Environmental Noise Assessment
- Building Shell Evaluation
- Space Adjacency
- Partition Design & Designation

Acoustic Needs

- Floor-Ceiling Assembly
- Equipment Noise and Vibration Control
- Plumbing Isolation
- Field NIC and IIC tests

Acoustical Requirements

Noise

Techniques needed to combat noise (unwanted sound)

Urban Noise

• Causes stress, ailments and decrease in productivity

Residential Environment	Representative 4 Hour Average Noise levels (dBA)	Subjective Loudness/Noisiness		
Undeveloped Rural	35-40	Baseline - Extremely quiet like typical quiet living room		
Rural Residential	40-45	40% louder/noisier (still very quiet)		
Quiet Suburban	45-50	Twice as loud or noisy (but still quite quiet)		
Urban Residential away from arterial/main streets	50-55	Three times as loud /noisy (still generally no significant noise impacts in residential areas)		
Urban residential near arterial road /main street	55-60	Four times as loud/noisy (threshold for onset of noise impacts due to speech and sleep interference)		
Urban residential on arterial road or main highway	60-65	Six times as loud/noisy (speech interference outdoors, increasing potential for sleep disturbance)		
Urban residential on major arterial or highway	65-75	Eight to eleven times as loud/noisy (outdoor spaces generally not useable, potential indoor speech interference, significant sleep disturbance)		

Acoustical Requirements

STC and IIC

- Determines acoustical performance of architectural assemblies
- STC Assembly's ability to resist airborne sound transfer at the frequencies 125-4000 Hz.
- IIC Indicates the amount of impact noise isolation provided by a floor/ceiling assembly

Minimum STC

- IBC Section 1207 requires STC not less than 50 (45 if field tested) for walls, partitions, and floor/ceiling assemblies separating dwelling units from each other or from public or service areas.
- Local code made supersede this requirement

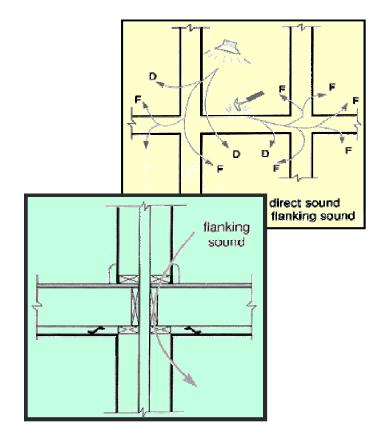
Minimum STC

 Meeting minimum requirements results in noise complaints

Ideal Sound Transmission Limitations for Floors in Multi-Family Housing				
Location of Floor-Ceiling	STC	IIC		
Unit to Unit (1)	STC 60	IIC 60		
Unit to Corridor (2,3)	STC 55	IIC 55		

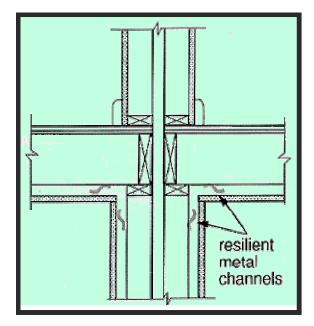
Note:

- 1. Inclusive of high noise spaces such as lobbies, boiler rooms, mechanical equipment rooms, elevator shafts, laundries, incinerator shafts and garages.
- 2. Inclusive of storage rooms, stairways etc.
- 3. This STC rating is not achievable in walls with entry doors even where gaskets are present.

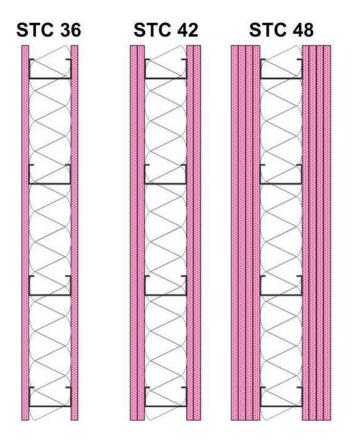

Acoustical Requirements

Testing Methods

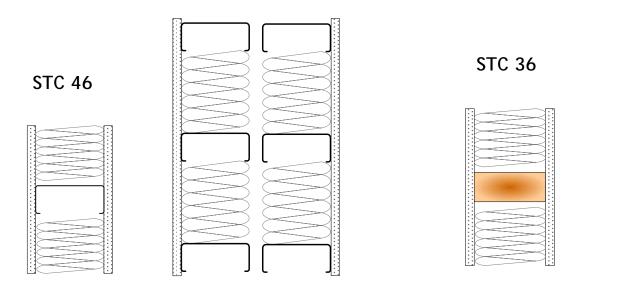
ASTM E90	Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements
ASTM E336	Standard Test Method for Measurement of Airborne Sound Insulation in Buildings
ASTM E413	Standard Classification for Rating Sound Insulation
ASTM E492	Standard Test Method for Laboratory Measurement of Impact Sound Transmission Through Floor-Ceiling Assemblies Using the Tapping Machine
International Standard ISO 140-4 (11)	Acoustics-Measurement of Sound Insulation in Buildings and of Building Elements


Common Noise Paths

- Direct sound travels directly through a partition
- Flanking sound causes structure borne vibrations that travel through connecting surfaces

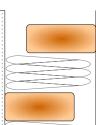

Sound Attenuation Aspects of a Wall

- Mass of the material
- Structural stiffness
- Airspace and sound insulation
- Decoupling of membrane


Mass

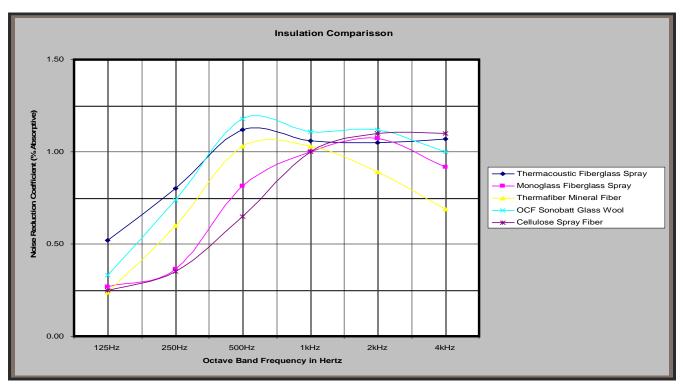
- Mass Law: The sound transmission of a wall is proportional to its mass per unit area
- Certain constructions can outperform the mass law, in particular cavity constructions




Rigidity

Less rigid wall interrupts noise/vibration path

STC 56

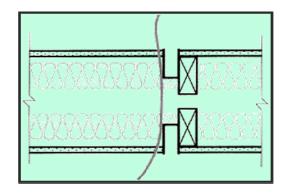


STC 47

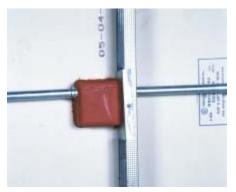
Sample: Wood stud walls

Insulation

• STC varies with insulation type and increases with overall thickness


Acoustical Sealant

- Small openings can lower the STC ratings by as much as 10 points
- Sealant critical material in sound attenuation

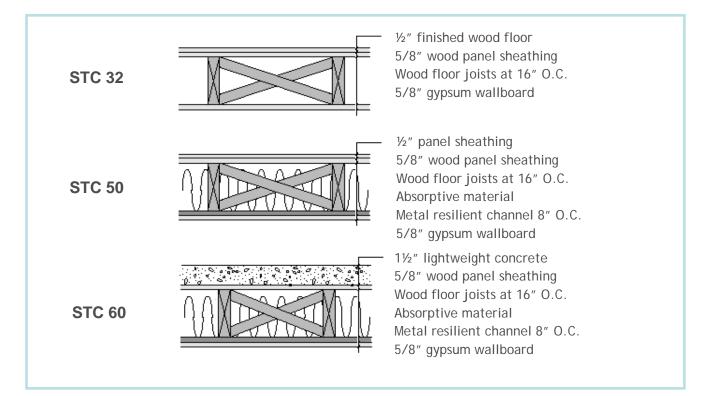


Wall Openings

- Metal or UL rated plastic electrical boxes placed back to back can lower STC significantly
- Use of firestop, insulation and distance of 24" between boxes produces negligible drop in STC

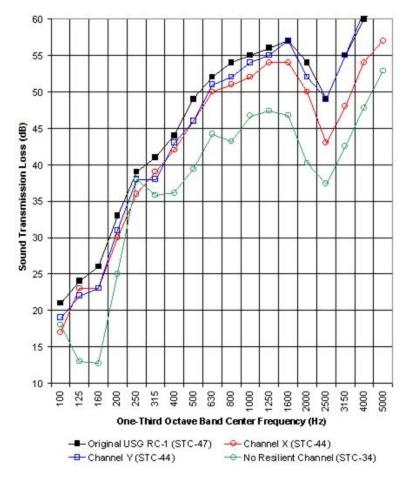
This image above shows the proper way to wrap an electrical box with putty pad.

Decoupling of Membrane

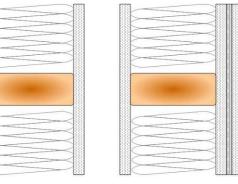

• Lowers STC

© PAC International Inc. 2007

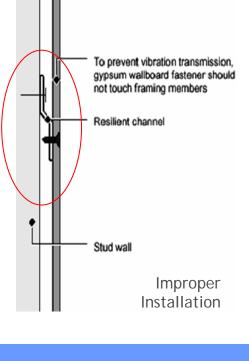
Resilient Channels


• Absorb sound rather than transmit it

Resilient Channels


- Gauge of steel and slot or hole patterns affect resilient properties
- Must be installed properly

Resilient Channel Comparison

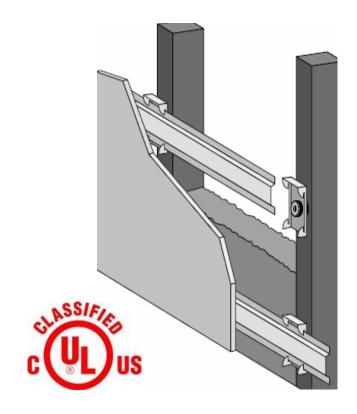

Resilient Channels

- Verify channel is capable of carrying gypsum wallboard load
- Use proper screw length
- Do not install over a solid surface

STC 38

Resilient Sound Isolation Clips

- RSIC rubber and steel assembly designed to hold and isolate 7/8" furring channels from the structure
- Large offset eliminates problem of screwing through channel to framing

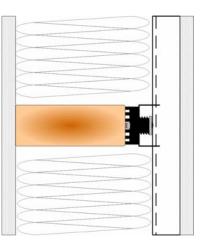


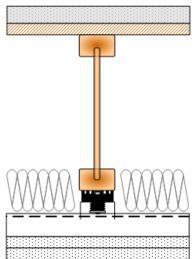
Resilient Sound Isolation Clips

Function

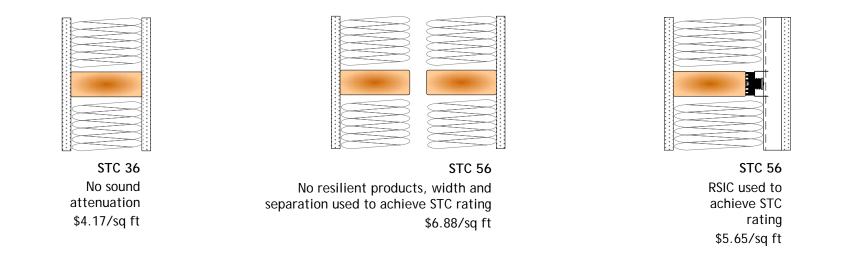
- Used in wall or ceiling assemblies
- Replaces resilient channel (RC-1)
- Effectively reduces structure borne sound
- Compatible with standard drywall products

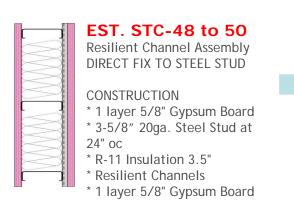
Resilient Sound Isolation Clips

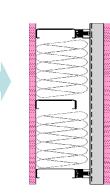

UL Assemblies


- Classified in UL resistive design assemblies
- Verify with manufacturer exact details

Applicability


- Walls, both new and retro-fit applications, with framing made of wood, steel, concrete, CMU or Aerated Autoclaved Concrete
- Floor-ceiling assemblies built with solid wood joists, I beam wood joists, open web wood trusses, cold rolled steel C section joists, open web steel trusses, and concrete slabs or suspended ceilings


Benefits


- Reduce width of wall assemblies and increase STC
- Costs to achieve similar STC ratings are lower when RSIC's are employed.

RSIC vs. Resilient Channels

EST. STC-44 WITHOUT RESILIENT CHANNEL OR RSIC-1 CLIP

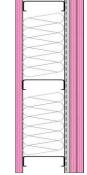
STC-58

RSIC Acoustic Assembly DIRECT FIX TO STEEL WALL FRAME

CONSTRUCTION

- * 1 layer 5/8" Gypsum Board
- * 3-5/8" 20ga. Steel Stud at 24" oc.
- C
- * R-19 Insulation 5.5"
- * RSIC-1™ 48" oc.
- * Drywall Furring Channel at 24" oc

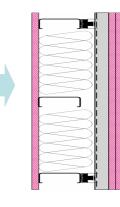
* 1 layer 5/8" Gypsum Board UL U419, U423


STC-61

RSIC Acoustic Assembly DIRECT FIX TO STEEL WALL FRAME

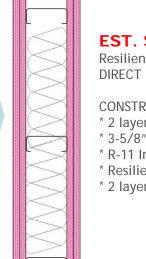
CONSTRUCTION

- * 1 layer 5/8" Gypsum Board
- * 3-5.8" 20ga. Steel Stud at 24" oc
- * R-19 Insulation 5.5"
- * RSIC-1™ 48" oc.
- * Drywall Furring Channel at 24" oc
- * 2 layers 5/8" Gypsum Board
- * UL Ū419, U423


EST. STC-48 WITHOUT RESILIENT CHANNEL OR RSIC CLIP

EST. STC-53 to 55 Resilient Channel Assembly DIRECT FIX TO STEEL STUD

CONSTRUCTION


- * 1 layer 5/8" Gypsum Board * 3-5/8" Steel Stud at 24"
- 00
- * R-11 Insulation 3.5"
- * Resilient Channel
- * 2 layers 5/8" Gypsum Board

© PAC International Inc. 2007

RSIC vs. Resilient Channels

EST. STC-50 WITHOUT RESILIENT CHANNEL OR RSIC-1 CLIP

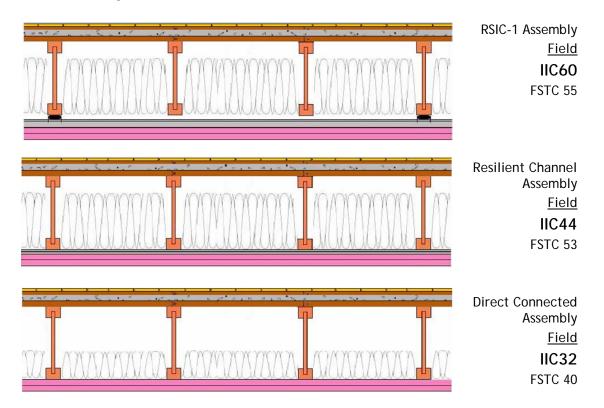
EST. STC-58 to 60

Resilient Channel Assembly DIRECT FIX TO STEEL STUD

CONSTRUCTION

- * 2 layers 5/8" Gypsum Board
- * 3-5/8" Steel Stud at 24" oc
- * R-11 Insulation 3.5"
- * Resilient Channel
- * 2 layers 5/8" Gypsum Board

STC-64


RSIC Acoustic Assembly DIRECT FIX TO STEEL STUD

CONSTRUCTION

- * 2 layers 5/8" Gypsum Board
- * 3-5/8" 20ga. Steel Stud at 24" oc
- * R-19 Insulation 5.5"
- * RSIC-1™ 48" oc.
- * Drywall Furring Channel at 16" oc
- * 2 layers 5/8" Gypsum Board
- * UL Ū419, U423

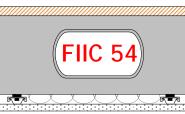
RSIC's and IIC

• Equivalent impact on IIC

RSIC's and IIC

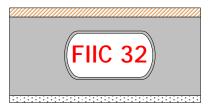
Wood Framed

RSIC-1 assembly Exceeds code by 15 FIIC points

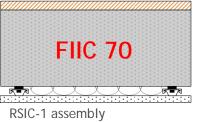


RC-1 assembly Does not meet minimum code

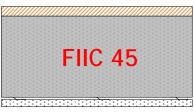
Direct connected assembly Does not meet minimum code


Structural Steel

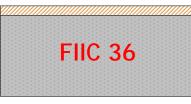
RSIC-1 assembly Exceeds minimum code by 9 FIIC points



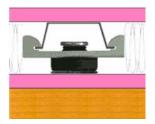
RC-1 assembly Does not meet minimum code

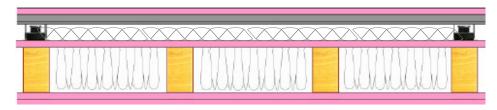


Direct connected assembly Does not meet minimum code

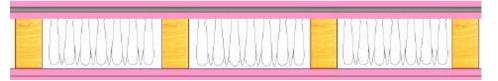

Post-tensioned Concrete

Exceeds minimum code by 35 FIIC points

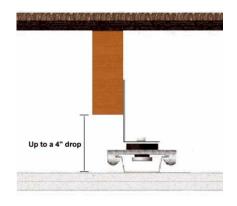

RC-1 assembly Does not meet minimum code

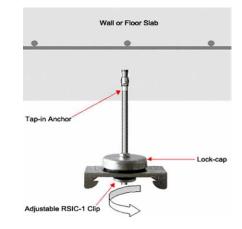

Bare slab Does not meet minimum code

Building Retrofit


• Reduces labor and expense of removal

RSIC in retrofit

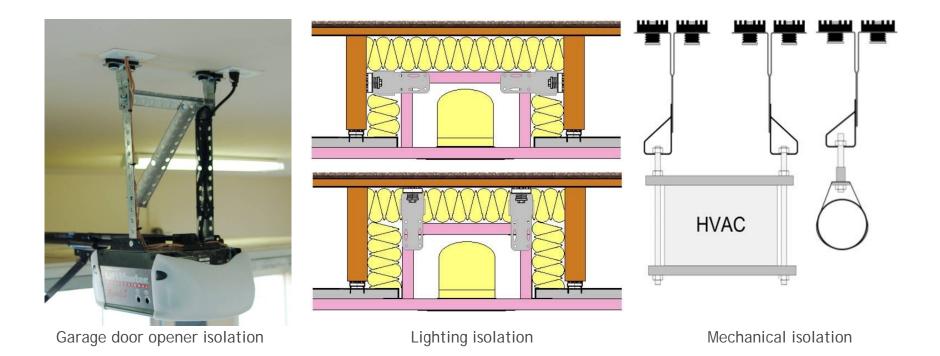

2 Layers 5/8" Gypsum, R-11, 1 Layer 5/8" GWB, RSIC-1, 7/8" DFC, 1 Layer 5/8" GWB. FSTC 49



Other Applications

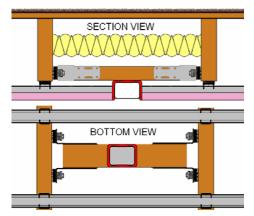
 Accommodate additional ceiling depth

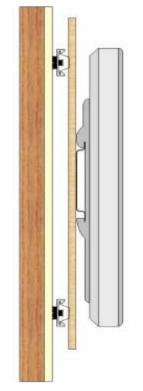
 Under concrete slab uses a 3" or 4" drive pin


Other Applications

- For dropped ceiling RSIC will decouple gypsum board from structure above
- can have thickness of 2" which added to 2"x4" framing creates standard thickness of 2"x6" wall

Sound isolation clip for use with dropped ceilings


Other Applications


Other Applications

RSIC value clip

Ceiling fan electrical box isolation

Wall mount flat screen TV isolation

RSIC technology combined with spring isolation for superior noise control

Questions

Thank You for Attending! This concludes the American Institute of Architects Continuing Education Systems Program

www.pac-intl.com